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Abstract. When parametrically excited, a harmonic system reveals a nonlinear dynamical behaviour which
is common to non-deterministic phenomena. The ion motion in a Penning trap — which can be regarded
as a system of harmonic oscillators — offers the possibility to study anharmonic characteristics when per-
turbed by an external periodical driving force. In our experiment we excited an electron cloud stored in a
Penning trap by applying an additional quadrupole r.f. field to the endcaps. We observed phenomena such
as individual and center-of-mass oscillations of an electron cloud and fractional frequencies, so-called sub-
harmonics, to the axial oscillation. The latter show a characteristic threshold behaviour. This phenomenon
can be explained with the existence of a damping mechanism affecting the electron cloud; a minimum value
of the excitation amplitude is required to overcome the damping. We could theoretically explain the ob-
served phenomenon by numerically calculating the solutions of the damped differential Mathieu equation.
This numerical analysis accounts for the fact that for a weak damping of the harmonic system we observed
an even-odd-staggering of the the different orders of the subharmonics in the axial excitation spectrum.

PACS. 52.27.Jt Nonneutral plasmas – 82.80.Qx Ion cyclotron resonance mass spectrometry

1 Introduction

Penning traps confine charged particles by a combination
of a static electric quadrupole potential Φ and a super-
imposed magnetic field B in axial direction. The scalar
quadrupole potential is described by

Φ =
U0

r2
0 + 2z2

0

(
r2 − 2

(
z2 − z2

0

) )
(1)

with r2 = x2 + y2 and the magnetic field follows from a
vector potential

A =
1
2
B × r ≡ 1

2
B(−yêx + xêy) (2)

when B = Bêz is along the z-symmetry axis. U0 is
the voltage applied to the hyperbolic shaped ring and
endcap electrodes (see Fig. 1) of characteristic dimen-
sion r2

0 + 2z2
0 = d2, where r2

0 is the radius of the ring
electrode and 2z0 is the distance between the endcaps.
The form of the potential in (1) suggests that the trap-
ping voltage U0 is applied to the ring electrode and to
the endcaps are grounded: Φ(r = r0, z = 0) = U0 and
Φ(x = 0, y = 0, z = z0) = 0. The Penning trap serves for
a number of different purposes: high precision measure-
ments of magnetic moments [1–3], accurate mass com-

a e-mail: werth@mail.uni-mainz.de

U

upper endcap

ring electrode

x

z

r0

z0

lower endcap

B

Fig. 1. Sketch of the hyperbolic Penning trap.

parison [3–6], or investigation of strongly coupled plas-
mas [7,8]. In these experiments the trap acts as a con-
tainer which keeps the charged particles in a localized
volume and makes them available for laser spectroscopic
or mass spectrometric experiments in a well controlled
environment.

The dynamics of trapped particles has also been sub-
ject to experimental [9–11] and theoretical investiga-
tions [12]. The stored ion or electron behaves essentially
as an oscillator which in the absence of deviations from
the ideal quadrupole potential is purely harmonic. Higher
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order terms in the potential arising from trap imperfec-
tions or space charge effects lead to anharmonicities in
the particle’s motion. Because of the conceptual simplic-
ity of the device it can be used to investigate the dynamics
of motion in some detail. In previous experiments in our
laboratory [13] we have shown that the existence of higher
order parts in the trapping potential lead to instabilities
in the ion motion when the electric and magnetic fields are
chosen in such a way that the following relation is fulfilled:

�+ω+ + �−ω− + �zωz = 0 (3)

where (�+, �−, �z) is a triple of integer numbers and the
frequencies ωj , j ∈ {+,−, z} result from the solutions of
the Euler-Lagrange equations of charged particle moving
in a static electric quadrupole field and a homogeneous
magnetic field:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 (4)

where qi ∈ {x, y, z} and q̇i ∈ {ẋ, ẏ, ż} are respectively the
canonical space and momentum coordinates and

L =
1

2m
(p + qA)2 + qΦ (5)

is the Lagrangian. The solutions of the set of equations
in (4) give three harmonic oscillations, called the axial,
the magnetron and the perturbed cyclotron motion with
respective frequencies:
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ωc = eB/m is the particles’ free cyclotron frequency.
In the absence of anharmonic perturbations a massive
charged particle confined in an ideal hyperbolic shaped
Penning trap can be regarded as a multiperiodic system.
By transforming this harmonic motion in a rotating frame
SΩ spinning around the symmetry z-axis at the angu-
lar velocity Ω = −ωc/2 with respect to the laboratory
frame at rest, the hyperbolic shaped trap is equivalent to
a three-dimensional oscillator moving in the radial plane
and in the axial direction with the frequencies (ω+−ω−)/2
and ωz, respectively [14,15]. The static anharmonic per-
turbations considered in the experiment of reference [13]
have its origin in the limitation of the technical realization
of the Penning trap used in the laboratory.

In this paper we present measurements on electrons
in a Penning trap which were additionally subject to a
time dependent perturbation. We show that the excita-
tion of their axial motion by an additional weak r.f. field
leads to the appearance of fractional frequencies in the mo-
tional spectrum. These subharmonics to the axial motion
are a fundamental characterization of nonlinear dynam-
ical systems when parametrically excited by an external

periodical driving force. Similar observation were made
on stored N+

2 [16], N+ [17] and H+
2 [18] molecules in a

Paul trap, where the confinement of charged particles is
obtained by an a.c. field applied additionally to a static
electric field to the same electrode configuration as in case
of the Penning trap.

1.1 Parametric excitation

It is a well-known fact that the excitation of a harmonic
system with an eigenfrequency ω at a frequency 2ω leads
to an oscillation at the frequency ω. We call this phe-
nomenon a parametric excitation [19–21] because the per-
turbation acting on the harmonic system is a character-
istic quantity of the system itself. Moreover the system
is excited at fractional frequencies 2ω/n, n ∈ N�{0}, so
called subharmonics. In the case of a parametric excitation
the increment of energy which is transfered by the exter-
nal excitation to the oscillating system is proportional to
the stored energy in the system itself and decreases with
higher order n of the parametric resonance. Moreover the
friction — which is present in every real harmonic system
— also depends linearly on the velocity of the oscillat-
ing system. So the ratio between the investment of energy
due to the parametric excitation and the energy dissipa-
tion due to frictional losses does not depend on the ampli-
tude. As a consequence the increment of the energy caused
by the external periodical perturbation has to exceed the
amount of energy dissipated during the same time, in or-
der to see the parametric resonances.

In the 30s Mandelstam and coworkers [22,23] started
a fundamental investigation on the theory of subharmon-
ics, which was essentially based on Poincarés tract on
celestial mechanics [24]. They built, as they called it, a
parametric generator consisting of an electric tank circuit
and a variable parameter being a capacitance or an induc-
tance. A more general approach elaborating a mathemat-
ical method was taken by Ljapunow. His stability theory
could also be extended to non-conservative systems, i.e.
the theory describes linear and nonlinear differential equa-
tions with periodic coefficients [25]. If the coefficient is a
time dependent cosinus function, we obtain as a special
case the Mathieu differential equation [26] for the ampli-
tude u of the system:

d2u

dτ2
+ (a − 2q cos 2τ)u = 0 (9)

a and q are the so-called stability parameters and τ =
Ωt/2 is the time normalized to the frequency Ω of the pa-
rameter. By applying the Floquet theorem [27] a set of sta-
ble and unstable solutions can be obtained which can be
graphically represented in a Strutt diagram [28] (Fig. 2).
This diagram has stable and unstable regions in the “pa-
rameter space” (a, q) corresponding to the undashed and
dashed areas, respectively.

The damped Mathieu differential equation, which has
additionally a constant linear damping term, can be
treated mathematically in the same way leading to the
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Fig. 2. Strutt diagram of the Mathieu differential equation.
The shaded areas belongs to infinite temporal solutions and
are called unstable.

calculation of Hill determinants [29] in order to get the
solutions of the set of equations. First quantitative theo-
retical calculations analysing the influence of the damping
term on the unstable regions of the Strutt diagram were
performed by Kotowski [30]. The most important result
is that the damping term reduces the unstable areas in
such a way that the instability occurs at a certain thresh-
old value of the parameter q, depending on the damping
constant of the harmonic system and on the excitation
amplitude of the external periodical driving force.

2 Experiment

For our investigation we use electrons since they are easy
to produce and the detection features are identical to the
one we apply for a magnetic field calibration within the
context of double resonance experiments [11]. Our results,
however, are independent of the nature of the trapped
particles and apply to heavy ions as well. Our trap has
a ring radius of r0 = 12.7 mm and an endcap distance
of 2z0 = 18 mm thus fulfilling the standard design in
which r0 =

√
2z0 [31]. This hyperbolic shaped trap is

placed in an ultra-high vacuum vessel at a base pressure of
2×10−9 mbar. The magnetic field is provided by a super-
conducting solenoid and has a strength of 2.87 T. Typical
trapping voltages U0 are about 15 V. The trap is loaded
by electrons coming from a tungsten wire placed 10 cm
outside the lower endcap electrode (see Fig. 3). They are
injected through a 1 mm hole into the trap by an electric
pulse of typically 10 ms duration. Detection of the trapped
electrons is through their axial motion: we connect the
two endcaps by an inductance L which forms a tank cir-
cuit together with trap electrodes acting as a capacitance
C (Fig. 4). The circuit is weakly excited at its resonance

Fig. 3. Penning trap as use in our experiment. The magnetic
field is directed along the vertical axis.

z-axis

R

Vd

I

C

L

Vs

U0

Fig. 4. Sketch of the external tank circuit connected to the
endcaps of the trap. The current I created by the induced im-
age charges flows through a resistance R which is part of the
tank circuit. Vd denominates the external periodical driving
force which parametrically excites the electrons. The picture
in the frame on the right side shows a detection signal of the
trapped electrons. The rectified damping signal of the LC cir-
cuit is proportional to the number of stored electrons.

frequency ωLC/2π = 13 MHz. When the trapping volt-
age U0 is varied the axial electron oscillation frequency
ωz changes according to equation (6). At a certain volt-
age (about 5 V) ωz is equal to ωLC . Then the electrons
absorb energy and the circuit is damped. By measuring
the voltage drop across the circuit we observe a decrease
in case of resonance. After rectification and demodulation
we obtain a signal whose amplitude is proportional to the
number of trapped electrons (see Fig. 4). It is digitized
and further handled by a personal computer. After de-
tecting the electrons the voltage ramp continues until the
trapping potential changes sign and the electrons leave
the trap. This assures that every loading-detection cycle
starts with identical initial conditions and no “memory
effect” of electrons left in the trap occurs.
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Fig. 5. Axial excitation spectrum showing subharmonics at
ω = 2ωz/n, n ranging from 2 to 10 taken at a trapping voltage
of U0 = 40 V.

2.1 Fractional frequencies

If a parameter of a harmonic system is excited at a fre-
quency which is twice as high as the eigenfrequency of the
system, i.e. 2ω, then the system itself starts oscillating at
a frequency ω. Additionally we observe resonances at the
fractional frequencies 2ω/n. These subharmonics form the
fundamental characteristic of nonlinear systems [20,32].

We excite the axial motion of the trapped electrons by
an additional r.f. field (<10 mV) applied to the filament
of the ion source (see Fig. 3) which we used as antenna
for the radiofrequency. We assume that due to the given
geometry of the trap electrodes we induce a superposi-
tion of a dipole and a quadrupole excitation. When the
frequency of this field is varied and the electron oscilla-
tion is excited the electrons gain energy and some of them
leave the trap. This resonant excitation is monitored by
a decrease in the detection signal. Figure 5 shows an ex-
ample of such a measurement where the minima in the
detected electron number occur at frequencies 2ωz/n, the
integer number n ∈ N ranging from 3 to 10. In addition
we observe resonances at different frequencies, produced
by linear combination of ω−, ω+, ωz, which are of no in-
terest here. All subharmonics to the 2ωz resonance re-
veal a characteristic substructure which becomes evident
when we scan across the resonance with high resolution.
As an example we show in Figure 6 the (n = 1)-resonance
which is most easily excited. We see a broad asymmetric
resonance (∆ν ≈ 3 MHz) and a one order of magnitude
smaller resonance (∆ν ≈ 200 kHz) on the higher frequency
side (Fig. 6). The asymmetry of this narrow resonance is
similar to the broad one (see Fig. 7 taken with higher res-
olution) and is a characteristic of a parametrically driven
anharmonic oscillator [19]. It may give informations about
higher order terms to the harmonic storage potential. This
is briefly discussed in the appendix.

We can regard these two resonances as two different
modes of motion of the electron cloud. The broad reso-
nance is the excitation of the individual electrons’ oscilla-
tions while at the narrow resonance the centre-of-mass
of the electron cloud is excited. This becomes evident
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Fig. 6. Excitation at ω−2ωz individual (lower frequency side)
and center-of-mass (higher frequency side) resonances.

28000 28200 28400 28600 28800 29000

1200

1400

1600

1800

2000

axial excitation frequency [kHz]

R
el

at
iv

e
el

ec
tr

o
n

n
u

m
b

er
[a

.u
.]

Fig. 7. The center-of-mass resonance taken with high resolu-
tion.

from the number dependence of the resonance frequen-
cies: while the broad resonance shifts to lower frequencies
with increasing electron number as expected from space
charge, the frequency position of the narrow resonance
remains constant since the centre-of-mass does not expe-
rience any space charge effect.

This “synchronous oscillation” of a cloud of charged
particles was first observed by Rettinghaus [33] in 1965 on
stored N+

2 molecules in a Paul trap1. First indications of
the same phenomenon on stored electrons in Penning traps
are attributed to Wineland and Dehmelt [34]. More de-
tailed investigations were performed by Paasche et al. [13].

The appearance of the fractional frequencies can be ex-
plained when we consider the axial motion of the electrons
under the influence of the r.f. driving field. Neglecting for
the moment damping terms of the harmonic system and
nonlinear terms in the storage potential the equation of
motion in the axial direction writes

z̈ + ω2
z z = V0 (cosωt) z (10)

where V0 and ω denote the amplitude and the frequency of
the excitation field, respectively. Using the transformation

1 This information is reported in reference [16].
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τ = ωt/2 equation (10) can be rewritten yielding

d2z

dτ2
+ (a − 2q cos 2τ)z = 0. (11)

The dimensionless parameters a and q are given by

a =
(

2ωz

ω

)2

(12)

and
q =

2F

ω2
(13)

with F = eV0/mr2
0.

Equation (11) is a differential equation of the Mathieu-
type. From the theory of Mathieu equations [27] it is
known that the solutions fall into two categories depend-
ing on the values of the pair of parameters (a, q): solutions
where the amplitude remains finite in time are called sta-
ble, those in which the amplitude increases to infinity with
time are called unstable. For vanishing values of the pa-
rameter q the instability tongues start at a = n2, n ∈ N

(see Fig. 2). In our case the amplitude of the exciting field
V0 which determines the value of q is very small (<1 V)
and we can reasonably assume q ≈ 0. Then it follows im-
mediately that the instabilities occur at the frequencies
ωn = 2ωz/n as experimentally observed.

The inclusion of a linear damping term −δż in equa-
tion (11) shifts on the one hand the starting point of
the instability tongues to larger a and q values and on
the other hand it reduces the instability regions. Further-
more a critical threshold amplitude is required to over-
come the effect of damping and therefore to make the
subharmonics visible. We can experimentally determine
the critical amplitude for the different subharmonics by
varying the excitation amplitude of the r.f. field and look-
ing at the value when the resonance vanishes. Figure 8
shows such a measurement where in a semilogarithmic
scale the excitation amplitude is plotted versus the width
of the resonance. The intersection point of the curve with
the abscissa marks the threshold value. This characteris-
tic threshold behaviour implying a critical amplitude Vc

for the different fractional resonances has been derived by
Bogoljubow [32] for small q values with the asymptotic
method:

V
(n)
crit (δ) = αn(δ)δ1/n. (14)

For very low damping constant the coefficient αn(δ) has
a neglegible dependence on δ [35]. When we plot the log-
arithm of the critical threshold amplitude versus the re-
ciprocal value of the order of the subharmonics we expect
from (14) a linear dependence with δ as slope. We find,
however, that different dependencies appear for the odd
and for the even values of n as seen from Figure 9. It
should be noted that the experimentally determined reso-
nances for n = 1 and n = 2 have a smaller threshold value
than theoretically calculated. Since these two fractional
frequencies are also excited directly through the tank cir-
cuit, the threshold value of the parametric excitation is
strongly affected by this direct excitation. Therefore the
threshold value is reduced.

0 2 4 6 8 10 12 14 16 18

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

excitation amplitude [dBm]

F
W

H
M

o
f

th
e

n
=

1
re

so
n
an

ce
[k

H
z]

Fig. 8. Graphical plot of the width of the 2ωz resonance versus
the excitation amplitude of the external driving force. The
intersection point of the curve with the abscissa defines the
threshold value.

Fig. 9. Observed relative threshold amplitudes for subhar-
monic excitation at ω = 2ωz/n. The dashed lines represent a
linear dependence.

The same phenomenon was observed on stored N+
2 [35]

and H+
2 [18] molecules in a hyperbolic shaped Paul trap

under UHV conditions. No satisfactory explanation for
this behaviour was given. Collings and Douglas made sim-
ilar experiments on heavier molecular ions in a linear Paul
trap at higher background pressures [36]. They observed
the predicted linear dependence for all values of n without
an indication of an even-odd staggering.

2.2 Damping mechanism

The damping of the electron oscillation can arise from two
different effects: collisions with background gas molecules
and energy dissipation when the trapped electrons are
brought into resonance with the detection tank circuit as
shown in Figure 4. In this case the harmonic motion of
the electrons in the axial direction induces image charges
in both endcaps which result in an induced current. This
current flows through a resistance, which is part of the
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tank circuit connected to the trap, creating thus a voltage
which adds to the trapping voltage. This voltage causes a
time varying axial electric field at the center of the trap
which implies an axial force. The latter counteracts the
electrons’ motion and therefore dampens it.

To estimate the size of the damping constant δ from
collisions we assume a collision rate R = nσv with a cross-
section σ ≈ 10−16 cm2 and a background gas density n
of 3 × 1010 cm−3 at a pressure of 10−7 mbar which is a
typical value for our experimental conditions. The relative
velocity v is about 1 × 108 cm/s. This corresponds to a
mean electron energy of 1.5 eV, a reasonable estimate in
the 15 V potential depth as applied in our experiment.
The damping constant caused by collisions δcoll = R/ωz

then amounts to about 5 × 10−6.
Damping from the detection circuit can be estimated

from the shift in the axial oscillation frequency caused
by the induced image charges. The axial resonance fre-
quency ωz of our oscillating system in case of damping is
shifted to

ω′
z = ωz

√
1 − δ2

2
. (15)

It follows then

δ2 =
2(ω2

z − ω′
z
2)

ω2
z

≈ 4(ωz − ω′
z)

ωz
=

4∆ωz

ωz
.

The fractional frequency shift ∆ωz/ωz has been derived
from the model of a homogeneously charged trapped par-
ticle cloud as [37,38]

∆ωz

ωz
=

Ned2

2a3U0
(16)

where Ne is the number of charges, d the distance be-
tween the endcaps of the trap and a the radius of the
particles’ cloud. For N = 106, d = 2z0 = 18 mm and
a ≈ 1 mm, determined by the size of the electrons’ en-
trance hole in the endcap electrode, we obtain for our
trapping voltage U0 = 15 V as a fractional frequency shift
∆ωz/ωz = 3.6×10−9. It follows for the damping constant
δimage = 1.2 × 10−4. An alternative way to determine the
damping resulting from the image charges is to look di-
rectly at the axial force Fz which is produced at the center
of the trap by the induced electric field [12]:

Fz = −eκIRdiss

2z0
(17)

e is the elementary charge, κ is a geometrical factor of the
order of one considering the curvature of the electrodes,
I is the induced current which flows through the resis-
tance Rdiss and 2z0 is the distance between the two elec-
trodes. Since the current I is proportional to the velocity ż
of the electron approaching the electrode, equation (17)
describes a dissipative force,

F = −mδz ż (18)

δz being the damping constant of the axial motion given
by [39]:

δz =
(

eκ

2z0

)2
Rdiss

m
. (19)

The resistance can be determined from the knowledge of
the inductance L, which cancels the trap capacitance to-
gether with the quality factor Q of the tuned tank circuit:

Rdiss = QωzL. (20)

Taking for L = 1 nH and for κ = 0.8, we obtain for an axial
excitation frequency of ωz = 2π × 13 MHz for the axial
damping constant the value δz ≈ 3 × 10−4, in agreement
with the estimate given above.

From these numbers it can be clearly seen that the
assumption δ � 1 is reasonable. Moreover we see that
for trapped electrons the main damping mechanism comes
from induced image charges.

3 Theoretical simulations

To first order we consider an additional linear damping
term leading to the following damped Mathieu equation

d2z

dτ2
+ δż + (a − 2q cos 2τ)z = 0. (21)

With the substitution z(τ) = e−
δ
2 τu(τ) we get back the

standard form of the Mathieu equation

d2u

dτ2
+ (ã − 2q cos 2τ)u = 0 (22)

with the modified value ã ≡ a − δ2/4.
As was demonstrated by Bogoljubow and Mitropolski

[32] and Hagedorn [40] further nonlinear terms κz3 and
quadratic damping terms λż2sgn(z) to first order do not
contribute to a reduction of the instability regions shown
in Figure 2. We obtain a solution of equation (22) in the
form

u = eµτp(τ) (23)

where p(τ) is a periodic function and µ is the Floquet
exponent [27] depending on the parameters ã and q. This
exponent is supposed to be complex when we consider
points (a, q) which lie in the unstable regions of the Strutt
diagram. Therefore we make the following ansatz for µ:

µ = γ + i n, n ∈ N. (24)

Using the algebraic software Mathematica2 we obtain the
following solution for the damped Mathieu equation, as-
suming z(0) = z′(0) = 0:

z(τ) = e−
δτ
2 (cer(q, τ) + ser(q, τ)) (25)

cer(q, τ) and ser(q, τ) are the elliptic cosine and sine func-
tions [27], respectively with r = a− δ2/4. For q = 0 these
functions reduces to

cer(0, τ) = τ cos

√
a − δ2

4
, (26)

ser(0, τ) = τ sin

√
a − δ2

4
. (27)

2 Wolfram Research, Inc. See http://www.wolfram.com
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Fig. 10. Boundaries of the unstable areas of the Mathieu equation for different damping constants belonging to the different
isocurves. From left to right the constants are γ = 0.02, 0.03, 0.05, 0.07, 0.09. The picture on the left belongs to a = 1 (n = 1)
and the picture of the right to a = 16 (n = 4).

The expression in parenthesis in equation (25) is a periodic
function of τ . Thus comparing equation (25) with equa-
tion (23) we can set the real part of the floquet exponent
equal to the damping constant δ, modulo 2.

In order to obtain µ we have to solve the roots of the
Hill’s determinantal equation [29]. As shown by Whittaker
and Watson the Hill determinant ∆(iµ) depending on µ
can be written in a compact form:

∆(iµ) = ∆(0) −
sin2

(
1
2
πiµ

)

sin2

(
1
2
π
√

ã

) (28)

∆(0) is the Hill determinant belonging to µ = 0 with
the dimension (2l + 1) × (2l + 1), l ∈ N, where l → ∞.
For the first three orders l = 1, 2, 3 the Hill determinants
∆(0) ≡ ∆l have the following forms:

∆1 = 1 +
2q2

(4 − ã)ã

∆2 =
2q2

(
1 − q2

(4 − ã)(16 − ã)

)
(4 − ã)ã

+
(
1 − q2

(4 − ã)(16 − ã)

)2

∆3 = 2q2

(
1 − q2

(16 − ã)(36 − ã)

)

×

(
1 − q2

(4 − ã)(16 − ã)
− q2

(16 − ã)(36 − ã)

)
(4 − ã)ã

+
(

1 − q2

(4 − ã)(16 − ã)
− q2

(16 − ã)(36 − ã)

)2

.

We only get a solution when the determinant ∆(iµ) van-
ishes, thus leading to

sin2

(
1
2
πiµ

)
= ∆(0) sin2

(
1
2
π
√

ã

)
=: f(ã, q). (29)

This equation can be interpreted as a functional system of
isocurves. It means that for a given µ we can determine all
a and q values belonging to the same Floquet exponent.

Inserting now the ansatz of equation (24) into the left
side of equation (29) we immediately get:

sin
(
i
π

2
(γ + i n)

)
=

i sinh
(π

2
γ
)

cos
(π

2
n
)
− cosh

(π

2
γ
)

sin
(π

2
n
)

. (30)

Two cases have now to be distinguished: in case of n = 2m
even we have

cos
(π

2
n
)

= cos (πm) = (−1)m

sin
(π

2
n
)

= sin (πm) = 0,

leading to

∆l sin2
(π

2

√
ã
)

= − sinh2
(π

2
γ
)

. (31)

In case of n = 2m + 1 odd we get

∆l sin2
(π

2

√
ã
)

= cosh2
(π

2
γ
)

. (32)

So for a given constant γ we have got an analytic expres-
sion for the isocurve f(a, q) for any order l of the Hill
determinant. As examples the instability areas starting at
a = 1 and a = 16 are plotted in Figure 10. The outer
curves mark the boundaries of the undamped instabil-
ity regions. When we plot the minimum q-value of the



46 The European Physical Journal D

0,0 0,2 0,4 0,6 0,8 1,0

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

n=8

n=6

n=4

n=2

n=7

n=5

n=3

n=1

Order of the instabilities 1/n

th
re

s
h
o
ld

v
a
lu

e
[d

B
]

Fig. 11. Graphical plot of the threshold value versus the recip-
rocal value of the order of the subharmonics for low damping
constant. We observe an even-odd staggering for γ = 10−4. For
the simulation Hill determinants with dimension l = 30 were
solved.
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Fig. 12. Threshold excitation for high damping constants. The
subharmonics belonging to even and to odd orders lie on one
single curve. For the simulation Hill determinants with dimen-
sion l = 30 were solved.

isocurves belonging to the same damping constant versus
the reciprocal value of the order of the instability n, we get
for a low damping constant (γ = 10−4) an even-odd stag-
gering as experimentally observed (Fig. 11). For a high
value of γ all orders of the instabilities lie on the same
curve (Fig. 12).

4 Summary and conclusions

We have investigated nonlinear dynamical processes of a
parametrically excited electron cloud stored in a Penning
trap. By driving the axial eigenmotion of the electrons
with an external periodical radiofrequency field we ob-
served phenomena which are a characteristic of an excited
anharmonic oscillator: the axial resonance of an electron
cloud splits into two asymmetric components which can
be assigned to the center-of-mass and the to the individ-
ual electrons’ oscillation. The asymmetry arises in the case

of the center-of-mass component from trap imperfections
while for the individual component the space charge po-
tential leads to unharmonicities. Furthermore we have ob-
served resonances appearing at frequencies ω = 2ωz/n.
These resonances show a similar substructure. The ap-
pearance of subharmonic resonances require a minimum
value of the excitation amplitude in order to overcome
damping. The damping mechanism is assumed to arise
mainly from induced image charges. For small values of
the damping constant the threshold amplitude shows a
staggering between even and odd values of the subhar-
monics while for larger damping constants this behaviour
vanishes. This can be understood by solving the corre-
sponding equations of motion and explains different ex-
perimental observations.

We demonstrated that a simple system of parametri-
cally excited electrons confined in a Penning trap serves
well for a study of nonlinear dynamical processes. The in-
vestigation of harmonic and anharmonic systems being ex-
posed to an external periodical perturbation can be used
for a variety of applications. A possible application lies
in quantum computing. Reducing the electron cloud to a
single electron which is parametrically excited can provide
the possibility for building a “1-bit-memory” [41].

Furthermore the phenomena of individual and collec-
tive motion of an ensemble of charged particles can also
be observed in plasma physics [42] in which neutral plas-
mas acquire for certain densities collective characteristics
where physical quantities like the Debye wavelength λD =√

kT/ε0ne2 and the plasma frequency ωp =
√

q2n/ε0m
play an important role.

Finally subharmonics also occur in solid state physics
when studying the interaction of optical waves in photore-
fractive materials [43]. These photorefractive media can be
used in optical signal processing for a wide range of tech-
nical application. It is interesting to note that there exist
an analogy between the spatial subharmonics observed in
photorefractive crystals and the temporal subharmonic in-
stabilities we observed on stored charged particles. From
the theoretical point of view the analogy is due to the fact
that the Kukhtarev’s material equations [44] governing
the photorefractive moving gratings can be transformed
into a nonlinear spatio-temporal differential equation for
space charge fields which is formally equal to the damped
Mathieu differential equation.

G.T. gratefully acknowledges M. Kretzschmar for fruitful dis-
cussions about the theoretical aspects of the experimental
results. Furthermore we thank R.F. Garc̀ıa for the repeated
measurements of the threshold values, thus confirming our pre-
vious results.

Appendix

The asymmetric peak shape with a tail on the low fre-
quency side observed for the first order individual and
center-of-mass resonance (see Figs. 6 and 7) arising from
anharmonicities emerging from higher order to the ideal
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Fig. 13. The individual (left) and the centre-of-mass (right) resonance with squared number of the number of electrons. The
fitted curves are given by equation (43).

quadrupole storage potential. This “real” electrostatic po-
tential can be developed in a series of Legendre polynoms:

Φ(|r|) = U0

∞∑
k=1

Ck

(
r

r0

)k

Pk(cos θ). (33)

For the following theoretical consideration we only con-
sider the octopole and the decapole term characterized
by the Legendre coefficients C4 and C6, respectively, as
the most likely leading terms of the perturbation. For the
equation of motion of the electron in axial direction we
can generally write:

z̈ + γz ż + ω2
zz + λ4ω

2
zz3 + λ6ω

2
zz5 = kω2

z cosωdt (34)

which is valid for the individual as well as for the center-
of-mass motion. γz is the axial damping constant, k is the
parametric excitation amplitude and ωd is the r.f. driving
frequency given by:

ωd = 2(ωz + ε), (35)

with ε � ωz. Furthermore λ4 and λ6 are related to the
Legendre coefficients in the following way [45]:

λ4 =
2C4

1 + C2
and λ6 =

3C6

1 + C2
(36)

C2 represents the pure quadrupole term which can be nor-
malized to 1.

Close to the resonance 2(ωz + ε) the response function
of the excited system increases exponentially, when ex-
ceeding a certain critical value of the amplitude kthr which
is defined by [9,10]

kthr =
2γz

ωz
. (37)

For a fixed value of the amplitude k > kthr the parametric
excitation is limited to the frequency interval ε− < ε < ε+,
where ε± have the following form:

ε± = ±ωz

4

√
k2 − k2

thr (38)

In order to solve the equation of motion in (34) we can
make the following ansatz:

z(t) = A(t) cos ((ωz + ε)t + ϕ(t)) . (39)

Under the assumption that the amplitude A(t) and the
phase ϕ(t) of the system only have a weak dependence on
time, we get for the conditions ε � ωz and γz � ωz two
coupled differential equations:

dA

dt
= −γz

2
A

{
1 − k

kthr

sin(2ϕ)
}

(40)

dϕ

dt
= −ε +

1
4
hωz cos(2ϕ) +

3
8
λ4ωzA

2 +
5
16

λ6ωzA
4.

(41)

For the stationary case the following solutions result:

sin(2ϕ) =
kthr

k
(42)

5λ6ωzA
4

16
+

3λ4ωzA
2

8
+ (ε+ − ε) = 0. (43)

By fitting now a parabolic function to the lower frequency
tail of the 2ωz-resonance we can extract the values for
λ4 and λ6, thus allowing us to determine the Legendre
coefficients C4 and C6. From our data (see Fig. 13) we
obtain for the individual resonance the values

C4 ≈ −9.8 × 10−3

C6 ≈ 3.8 × 10−5

whereas for the center-of-mass resonance we get

C4 ≈ −7.5 × 10−2

C6 ≈ 2.8 × 10−4.

Note that values for the center-of-mass resonance are
roughly one order of magnitude bigger than the values
for the individual resonance. This might be due to the
fact in the case of the stochastic, incoherent motion of
the electron cloud the single electrons feel the Coulomb
potential of the neighbouring electrons which add to the
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anharmonicities of the storage potential. In contrast, the
centre-of-mass of the electron cloud does not experience
any space charge because of the lacking Coulomb interac-
tion and the anharmonicities are entirely due to the trap
imperfections.
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18. B. Schäfer, Diploma thesis, Inst. f. Phys., Mainz (1999)
19. L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen

Physik - Bd. I Mechanik, Hrsg. von G. Heber (Akademie-
Verlag, Berlin, 1969)

20. M. Minkorsky, Nonlinear Oscillations (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1962)

21. E. Butikov, Comput. Sci. Engineer. 1, 76 (1999)
22. L. Mandelstam, N. Papalexi, Z. Phys. 73, 223 (1932)
23. L. Mandelstam et al., J. Tech. Phys. (U.S.S.R.) 2, 81

(1934)
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